Unit 1 Halfway Review

1. Write the equation of a line in standard form that goes through the points (6, -5) and (-2, 7)

$$M = \frac{7 + (+5)}{-2 - (0)} = \frac{12}{-8} = -\frac{12}{2}$$

2. Graph the piecewise function and complete the following.

Domain: (-3, 00)

Range: [U, \infty]

Find f(8):

- 3. A gym offers a variety of exercise classes. Members of the gym can attend up to 5 classes per week with their monthly fee of \$35. If they would like to attend more than 5 classes per week, they must pay an additional \$3 per class. The gym does not allow members to take more than 10 classes per week. Write the piecewise function that could be used to determine the cost a member would pay to go to the number of classes they'd like to attend.

$$f(x) = \begin{cases} 35 & 0 \le x \le 5 \\ 35 + 3(x - 5) & 5 + x \le 10 \end{cases}$$

X=# classer

Identify the parent graph and the transformations.

- $4. f(x) = -2\sqrt[3]{-(x-5)}$ f(x)= 3x + cubic-Rights - Reflect x-axis - V. stretch by 2 - KIFIPCT Y-axis
- 5. g(x) = |6x| + 7gext= Abs. Value -H. compression by the
- 6. Write the equation of a quadratic that has been reflected over the y-axis, vertically compressed by

7. Is the function $f(x) = \sqrt[3]{x} + x^2 - x$ even, odd, or neither? Explain how you know.

$$f(-x) = \sqrt[3]{-x} + (-x)^2 - (-x) - f(x) = -\sqrt[3]{x} - x^2 + x$$

= $-\sqrt[3]{x} + x^2 + x$
Neither

8. Determine the symmetry of the function $g(x) = \frac{x}{x^2+1}$

9. Using the graph below, find the following:

Domain:
$$(-\infty, \infty)$$

Range:
$$(-\infty, 2)$$

Range:
$$(-\infty, 2)$$

Increasing: $(-\infty, -2)$ \emptyset $V(2, 2.5)$
Decreasing: $(-2, -1)$ $V(1, 2)$ $V(2.5, \infty)$

Decreasing:
$$(-2,-1)$$
 $V(1,2)$ $V(2-5)$

Find the domain for each of the following.

13.
$$f(x) = \frac{\sqrt{5x-4}}{x+3}$$